skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhang, Huihao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the upcoming decades, one of the primary objectives in exoplanet science is to search for habitable planets and signs of extraterrestrial life in the Universe. Signs of life can be indicated by thermal-dynamical imbalance in terrestrial planet atmospheres. O2and CH4in the modern Earth’s atmosphere are such signs, commonly termed biosignatures. These biosignatures in exoplanetary atmospheres can potentially be detectable through high-contrast imaging instruments on future extremely large telescopes. To quantify the signal-to-noise ratio (S/N) with extremely large telescopes, we select up to 10 nearby rocky planets and simulate medium-resolution (R∼ 1000) direct imaging of these planets using the Mid-infrared ELT Imager and Spectrograph (ELT/METIS, 3–5.6μm) and the High Angular Resolution Monolithic Optical and Near-infrared Integral field spectrograph (ELT/HARMONI, 0.5–2.45μm). We calculate the S/N for the detection of biosignatures including CH4, O2, H2O, and CO2. Our results show that GJ 887 b has the highest detection of S/N for biosignatures, and Proxima Cen b exhibits the only detectable CO2among the targets for ELT/METIS direct imaging. We also investigate the TRAPPIST-1 system, the archetype of nearby transiting rocky planet systems, and compare the biosignature detection of transit spectroscopy with JWST versus direct spectroscopy with ELT/HARMONI. Our findings indicate JWST is more suitable for detecting and characterizing the atmospheres of transiting planet systems such as TRAPPIST-1 that are relatively further away and have smaller angular separations than more nearby nontransiting planets. 
    more » « less
  2. Ruane, Garreth J (Ed.)
    HISPEC is a new, high-resolution near-infrared spectrograph being designed for the W.M. Keck II telescope. By offering single-shot, R 100,000 spectroscopy between 0.98 – 2.5 μm, HISPEC will enable spectroscopy of transiting and non-transiting exoplanets in close orbits, direct high-contrast detection and spectroscopy of spatially separated substellar companions, and exoplanet dynamical mass and orbit measurements using precision radial velocity monitoring calibrated with a suite of state-of-the-art absolute and relative wavelength references. MODHIS is the counterpart to HISPEC for the Thirty Meter Telescope and is being developed in parallel with similar scientific goals. In this proceeding, we provide a brief overview of the current design of both instruments, and the requirements for the two spectrographs as guided by the scientific goals for each. We then outline the current science case for HISPEC and MODHIS, with focuses on the science enabled for exoplanet discovery and characterization. We also provide updated sensitivity curves for both instruments, in terms of both signal-to-noise ratio and predicted radial velocity precision. 
    more » « less